Il più grande archivio italiano di analisi statistiche sul tennis professionistico. Parte di Tennis Abstract

Probabilmente il più grande archivio italiano di analisi statistiche sul tennis professionistico. Parte di Tennis Abstract

La precisione delle previsioni del sistema Elo e la velocità della superficie

ULTIMI ARTICOLI

ULTIMI ARTICOLI

Pubblicato il 10 febbraio 2017 su StatsOnTheT – Traduzione di Edoardo Salvati

// Con solo 2 delle prime 8 teste di serie nei quarti di finale degli Australian Open 2017, il primo Slam dell’anno si rivelato un’ecatombe per molti dei modelli predittivi. Anche il sistema di previsioni Elo, uno dei più accurati a disposizione nel tennis, non avrebbe potuto anticipare le condizioni insolite riscontrate quest’anno a Melbourne.

O, forse, avrebbe potuto?

Sappiamo che uno di fattori determinanti per le numerose vittorie a sorpresa è stata una percentuale al servizio più alta del solito. Analizzando il numero di punti vinti in media al servizio per torneo, si può notare negli anni una tendenza incrementale, diffusa tra tutte le superfici. Sul cemento, ad esempio, la percentuale al servizio è aumentata di 3 punti percentuali nell’arco di 20 anni. Quale sia stato l’effetto più rilevante tra superficie, palline o attrezzatura, gli Australian Open 2017 hanno rappresentato un estremo, anche rispetto alle tendenze riscontrate sul circuito.        

IMMAGINE 1 – Tendenze nella frequenza di servizi in campo per l’ATP nel periodo 1991 – 2016

Perché un cambiamento nel vantaggio al servizio dovrebbe influire sull’efficacia predittiva?

Ci sono diverse ragioni per le quali ci si può aspettare che le valutazioni predittive varino, per un determinato torneo, in funzione del livello complessivo di vantaggio al servizio. È possibile che percentuali al servizio sistematicamente migliori riflettano condizioni di gioco, come la velocità della superficie, o uno stile prevalente – scambi corti rispetto a scambi lunghi – che diano maggiori benefici ad alcuni giocatori anziché ad altri.  Ci si chiede se i metodi predittivi classici che ignorano questi fattori dovrebbero invece considerarli.

Possiamo farci un’idea sulla risposta a questo interrogativo cercando di capire se l’errore predittivo è legato alla abilità complessiva al servizio di un giocatore.

Il grafico dell’immagine 2 riporta il valore, su base annua, della radice dell’errore quadratico medio (RMSE) nelle previsioni Elo di ciascun giocatore rispetto all’indice-z del servizio per l’anno di riferimento (nella versione originale è possibile visualizzare i singoli valori puntando il mouse sul grafico, n.d.t.). L’indice-z misura, nell’anno in questione, la prestazione al servizio del giocatore rispetto a un giocatore medio del circuito in unità di deviazione standard, con i valori più negativi che si riferiscono ai giocatori meno bravi al servizio e, viceversa, con i valori più positivi per i giocatori più bravi al servizio.

Evidenti strutture nella relazione tra errore predittivo e servizio

Analizzando tutte le partite del circuito ATP dal 1991 al 2016, troviamo alcune evidenti strutture nella relazione tra errore e servizio. L’RSME tende ad avere il valore più basso, ma anche il più variabile, per i giocatori con il servizio peggiore. Per i giocatori con un servizio medio o appena sopra la media la frequenza di errore aumenta ma la varianza si riduce. All’estremo opposto, dove si trovano giocatori come Ivo Karlovic, l’errore tende a diminuire di nuovo.   

IMMAGINE 2 – Errore predittivo e abilità al servizio

Che indicazioni si possono trarre dalla forma sigmoidale della curva? Un primo aspetto è che sembra suggerire che l’accuratezza abbia un costo, visto che i giocatori servono con percentuali più vicine alla media. I diversi colori rappresentano il vantaggio del servizio per lo specifico torneo. Vista la rilevante sovrapposizione di colori, la forma suggerisce anche che la relazione errore-abilità non subisce una grande variazione da un evento all’altro, cioè, quando si parla di dinamiche di errore, ha più importanza il livello di abilità al servizio del giocatore rispetto al campo in cui si gioca, anche se la particolare superficie di un torneo potrebbe influire sulla bravura al servizio di un giocatore in un momento specifico della stagione.

Elo tende ad attribuire più fiducia a un giocatore

Per verificare se l’errore tende ad assumere un particolare verso, si può analizzare l’errore medio. Il grafico dell’immagine 3 mostra la media delle probabilità di vittoria di un giocatore rispetto alle vittorie effettive raggruppata per giocatore e per anno, come nel grafico precedente. Una differenza positiva suggerisce che il sistema Elo tende a previsioni più ottimistiche. Si nota che, nell’arco di tutti gli indici-z, l’errore è più positivo che negativo, quindi Elo tende ad attribuire maggiore fiducia nelle prestazioni di un giocatore rispetto a quelle effettivamente poi conseguite.    

IMMAGINE 3 – Verso medio di errore nelle previsioni Elo in funzione del vantaggio al servizio

È interessante osservare che il verso dell’errore sembra cambiare in funzione delle percentuali al servizio di un determinato torneo. Mentre l’andamento medio evidenziato in grigio è tipico di molti tornei con frequenza di 0.64 (vale a dire, in media, il 64% di servizi in campo), i tornei sopra a questo livello tendono ad avere una correlazione negativa così che la parzialità si avvicina a zero per i giocatori dal servizio migliore nei tornei con una frequenza di servizi in campo complessivamente più alta. 

Conclusioni

C’è ancora molto da fare per comprendere le cause che determinano queste dinamiche di errore. Almeno per il momento l’analisi suggerisce che ridurre l’errore nei confronti dei giocatori che si pongono nella fascia media di servizio potrebbe essere una strategia importante per migliorare le capacità predittive nel tennis. ◼︎

Elo Prediction Accuracy and Court Pace

DELLO STESSO AUTORE