Il più grande archivio italiano di analisi statistiche sul tennis professionistico. Parte di Tennis Abstract

Probabilmente il più grande archivio italiano di analisi statistiche sul tennis professionistico. Parte di Tennis Abstract

Note dal primo hackathon del tennis

ULTIMI ARTICOLI

ULTIMI ARTICOLI

Pubblicato il 19 febbraio 2018 su StatsOnTheT – Traduzione di Edoardo Salvati

// Dopo la vittoria di Roger Federer agli Australian Open 2018, è tempo di conoscere i vincitori della prima competizione hackathon “Australian Open vs Intelligenza Artificiale”. Di seguito, esamino i modelli vincenti e mi soffermo sul loro significato per il futuro delle previsioni sull’esito dei punti nel tennis.

Un concorso per cervelli informatici

All’inizio dell’anno il Game Insight Group di Tennis Australia, la Federazione australiana, ha indetto un proprio concorso di tennis in cui a sfidarsi non erano colpi di racchetta, ma fantasia cerebrale e destrezza informatica: il primo hackhaton nella storia del tennis.

Sponsorizzato da crowdAnalytix, l’hackathon “Australian Open vs Intelligenza Artificiale” è stata la prima competizione nel tennis basata sull’uso di dati per risolvere una specifica richiesta, l’automatizzazione tramite algoritmo della categorizzazione dei colpi in vincenti, errori forzati e non forzati.

Questo grazie alla possibilità per i partecipanti di analizzare – a partire dal 2 gennaio 2018 – un campione di 10.000 punti delle partite degli Australian Open.

IMMAGINE 1 – Esiti predetti dei punti

Non si trattava solo di un contesto in cui ricercatori e programmatori erano motivati a esplorare i confini del contributo che l’intelligenza artificiale è in grado di dare al tennis, ma anche del primo esempio di condivisione pubblica di un enorme massa di dati contenenti informazioni puntuali sulla disposizione di giocatori e pallina in campo nel corso di un’intera partita. 

I modelli vincenti sono stati scelti alla fine delle tre settimane di competizione. Prima di vedere quali soluzioni hanno prevalso, osserviamo da vicino il campo partecipanti.

Fotografie dall’hackathon

Si sono iscritti 750 partecipanti da 55 paesi, che hanno concorso con un totale complessivo di 2731 soluzioni. Con 223 partecipanti è stata di gran lunga l’India la più rappresentata, seguita dagli Stati Uniti con 78 e dall’Australia con 51.

IMMAGINE 2 – Partecipanti all’hackathon “Australian Open vs Intelligenza Artificiale”

Per il 90% i partecipanti erano singole persone. I due codici di scrittura più comuni nelle soluzioni presentate sono stati R, leggermente più utilizzato, e Python.

I vincitori dell’hackathon

I vincitori finali sono stati selezionati sulla base del rendimento del modello rispetto a un campione di dati prova e in funzione della qualità del prospetto descrittivo dell’approccio metodologico.

Il campione di dati prova non è stato reso disponibile ai partecipanti per evitare il rischio di overfitting – cioè di eccessivo adattamento – e per fornire la valutazione più realistica possibile di come il modello si comporterebbe nell’applicazione concreta. 

Il primo premio è andato a Scott Sobel, che ha battuto gli altri quattro finalisti. Sobel è un programmatore americano che ha raggiunto un livello di accuratezza complessivo del 95% (98% per i vincenti, 89% per gli errori forzati e 95% per i non forzati). In altre parole, Sobel ha costruito un modello automatizzato che ci si attende concordi con i valutatori statistici di una partita sull’esito di 95 punti su 100.

È interessante notare come alcune caratteristiche della soluzione vincente sono comuni a quelle degli altri modelli finalisti, le più significative delle quali sono state:

  • analisi congiunta dei dati delle partite maschili e femminili per una maggiore elaborazione di calcolo
  • ampio ricorso all’ingegnerizzazione di variabili derivate
  • tecnica del potenziamento (boosting).

Nel suo modello, Sobel ha fatto ampio ricorso all’ingegnerizzazione di variabili derivate, includendone più di 1000 rispetto a quelle fornite in partenza. Lo sviluppo è stato portato avanti in R, con uso estremo della tecnica del potenziamento del gradiente (gradient boosting), così come fatto da tre dei cinque modelli finalisti.

Utilizzi futuri

L’hackathon “Australian Open vs Intelligenza Artificiale” ha prodotto uno strumento altamente sofisticato, che potrebbe essere il primo grande passo per automatizzare la categorizzazione degli esiti dei punti delle partite.

Ha contestualmente mostrato il valore potenziale dei dati nel tennis e degli incredibili risultati che si possono ottenere quando informazioni puntuali sono messe a disposizione di super appassionati di tennis con un talento per l’analisi statistica. ◼︎

AO to AI Hackathon Winners Announced

DELLO STESSO AUTORE